BII-7630 Series Phased Array Transducer

BII-7630 Series Phased Array Transducer: Beamforming

The phased array transducers are rectangular (linear) or Curvilinear (Cylindrical Segment) array with custom-fit along-length (or along-curve) beamwidth and cross-length (or cross-curve) beamwidth for use in location, search of sound sources underwater in in tens or hundreds meter range, and acoustical imaging in biomedical, oceanography, NDT \& AE, and material study. Along-length (or along-curve) beam can be steered and focused in $\pm 90^{\circ}$ range with array beamforming technology. Multiple beams at different directions can also be formed simultaneously with digital beamforming technology. The side lobes along length can be suppressed with amplitude shading or weighting.
Two or four array hydrophones can be used to set up "T" or " + " type cross array functioning as Target Angle Estimation System with Mills Cross technique. High resolution image can be formed with the technology of Synthetic Aperture Sequential Imaging. A phased line array transducer (projector) and a phased array hydrophone can work as a multibeam SONAR with Mills Cross technique. Multiple transducers can be wired in parallel electrically to set up a longer line array for reducing along-length beam width in low frequency range.

Width

Typical Applications

Acoustical Imaging: B-mode (2D) and Mechanical 3D, Diagnostic Ultrasound.	Underwater Floor/Bottom Mapping, Sector Scanning
Acoustic Pipeline Leak Detection, AE (NDT) and Material Study	Target Angle Estimation Systems, Direction-finding Sonar
Search \& Tracking of Acoustic Tag, Pinger, Beacon/Transponder...	Navigation, Target Tracking, Obstacle Avoidance, Positioning, Object Detection

Phased Array	BII-7631	BII-7632
Array Aperture:	Linear Array (Rectangular)	Curvilinear Array (Cylindrical Sector/Segment)
Major Features:	Narrow Beam along the length. Wide beam along the width.	Wide Beam along the curved face. Wide beam along the width.
Array Element Number N :	Custom-fit, N is determined by fs, d and -3 dB along-Length or along-curve beamwidth. $\mathrm{N}=76200 /(\mathrm{fs} * \mathrm{~d} * \text { Along-Length Beamwidth) }+1 .$	Custom-fit, N is determined by fs, d and -3 dB along-Length or along-curve beamwidth. BII will work out N with along-curve beamwidth and Element spacing d.
Signal Type:	Pulsed SINE, Chirp, PSK, FSK, Pulsed Square Waveform, CW, etc.	
Resonant Frequency fs.	50 kHz to 2 MHz , Custom-fit. fs in stock: $50,60,70,100,120,150,200,250,300,350,400,500 \mathrm{kHz}$.	
Resonant Frequency fs.	1. Efficiency is low in the frequency range far from f_{s}, so it is NOT recommended to operate transducer at frequency far from f_{s}. 2. Transducer can operate in low power at frequency far from fs, the input power P_{i} should be much less than 1\% MCIP at f_{s}.	
Third Harmonic:	2.9 fs ~ 3.2fs; Transducers can operate at 3fs.	
Quality Factor Q_{m} :	≈ 3 to $5 .-3 \mathrm{~dB}$ bandwidth $=\mathrm{fs} / \mathrm{Qm}_{\mathrm{m}}$.	
Element Spacing d:	The distance among the center lines of two neighboring elements. Along Length or Curve. Default: $\lambda / 2$ or Custom-fit, in mm .	
TVR:	$>160 \mathrm{~dB} \mu \mathrm{~Pa} / \mathrm{V} @ 1 \mathrm{~m}$ @ fs. Transmitting Voltage Response.	
Radiation Sound Level SL:	$\mathrm{SL}=20^{*} \log \mathrm{~V}_{\mathrm{i}}+\mathrm{TVR}$, dB μ Pa@1m. Driving Voltage V_{i} is in unit of $\mathrm{V}_{\text {rms }}$.	
Admittance (G and B):	TBD, to be determined.	
-3dB Beam Width at fs:	Horizontal (Along-length) Plane: 0.1° to 50°	Horizontal (Along-curve) Plane: 30° to 120°

Underwater Sound Solutions

	Vertical (Cross-length) Plane: 1° to 50°	Vertical (Cross-curve) Plane: 1° to 50°
	Specify with $\mathrm{H}^{\circ} \mathrm{xV}{ }^{\circ}$ when ordering. For example, $5^{\circ} \times 50^{\circ}$ at fs, horizontal beam width 5°, vertical beam width 50°.	
Directivity Pattern:	Fan-shaped beam	
Steering Beam:	Along-Length: $\pm 90^{\circ}$	Along-curve: $\pm 90^{\circ}$
	Cross-length: No.	Cross-curve: No.
Beamforming:	Electronic beam steering and focusing in the scan plane.	
Side Lobe Level:	≤-15 (dB)	≤-20 to -30(dB) depends on frequency and curvature.
Driving Voltage:	1. Default: Maximum 600 Vrms. 2. TBD. To be determined with customization.	
Transducer without Impedance Matching Unit		
Driving Voltage V_{i} at f_{s} :	Pulsed Driving Signal and Duty Cycle D < 100\%: Maximum $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\text {imax }}=\mathrm{V}$ ($\mathrm{MIPP} / \mathrm{G}_{\max }$) or 600, whichever is less, in $\mathrm{V}_{\text {rms }}$.	
	Continuous Operation at 100\% Duty Cycle: Maximum $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\text {imax }}=\mathrm{V}\left(\mathrm{MCIP} / \mathrm{G}_{\max }\right)$, in $\mathrm{V}_{\text {rms }}$.	
	To achieve higher sound level, built-in impedance matching is recommended to step up driving voltage inside the transducer.	
Transducer with Impedance Matching Unit		
Drivin	Pulsed Driving Signal and Duty Cycle D < 100\%: $\mathrm{V}_{\text {imax }}=\mathrm{V}\left(\mathrm{MIPP}^{*}\|\mathrm{Z}\|\right.$), in $\mathrm{V}_{\text {rms }}$. Z is impedance with Impedance Matching Unit at fs.	
	Continuous Operation at 100\% Duty Cycle: Maximum $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\text {imax }}=\mathrm{V}(\mathrm{MCIP}$ * $\|\mathrm{Z}\|)$, in $\mathrm{V}_{\text {rms }}$.	
Input Power P_{i} :	$\mathrm{P}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}}{ }^{*}$ G. Refer to G-B Graph: G is conductance, $\mathrm{G}_{\text {max }}$ is maximum G at f_{s}.	
MIPP at $\mathrm{f}_{\text {s }}$:	Maximum Input Pulse Power at $\mathrm{f}_{\mathrm{s}}: \mathrm{P}_{\mathrm{i}}=\mathrm{V}^{2}{ }^{*} \mathrm{G}_{\text {max }}$ or TBD Watts, whichever is less. TBD, to be determined.	
MPW at MIPP and f_{s} :	TBD Seconds, Maximum Pulse Width at MIPP and at f_{5}. TBD, to be determined.	
MCIP at f_{s} :	TBD Watts, Maximum Continuous Input Power at fs. TBD, to be determined.	
How to determine pulse width, duty cycle and off-time with input pulse power (peak power) at f_{s} : 1. Determine the input pulse power (IPP, peak power) with sound intensity required by the project. IPP MUST be less than MIPP. 2. Pulse Width $\leq\left(\right.$ MIPP $\left.* M P W^{*}\left(120^{\circ} \mathrm{C}-\mathrm{T}\right) / 103^{\circ} \mathrm{C}\right) /$ IPP. T: Water Temperature in ${ }^{\circ} \mathrm{C}$. 3. Duty Cycle $\left.\mathrm{D} \leq \mathrm{MCIP}^{*}\left(120^{\circ} \mathrm{C}-\mathrm{T}\right) / 103^{\circ} \mathrm{C}\right) / \mathrm{IPP}$. 4. Off-time \geq PW*(1-D)/D.		
	-181 to -195 dB V/ $\mu \mathrm{Pa}$ @ fs. Free-field Voltage Sensitivity.	
FFVS at f_{s} :	Sensitivity Loss over extension cable at $f_{s}(d B)=20 * \log \left\{\left(1+2 \pi f_{s} C_{c} / B\right) / \sqrt{\left[G^{2}+\left(B+2 \pi f_{s} C_{c}\right)^{2}\right] /\left(G^{2}+B^{2}\right)}\right\}$ G : Conductance at f ; B : Susceptance at f_{s}; C_{c} : Capacitance of Extension Cable. Cable is of $100 \mathrm{pF} / \mathrm{meter}$ roughly.	
Receiving Sound Level SL:	$\mathrm{SL}=20^{*} \log \mathrm{~V}_{0}-\mathrm{FFVS}, \mathrm{dB} \mu \mathrm{Pa}$. Receiving Voltage V_{0} is in unit of $\mathrm{V}_{\text {rms }}$.	
Operating Depth:	Maximum 300 m . Limited by the cable length if the cable has wire leads or a non-waterproof connector.	
Mounting Options:	1. Default: Free Hanging (FH) 2. Thru-hole Mounting with Single O-ring (THSO) 3. Thru-hole Mounting with Double O-ring (THDO) 4. Bolt Fastening Mounting (Stainless Steel): (BFMSS) 5. End-face Mounting for Multi-Element: (EFMM) Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and more details.	
Cable-Out:	By default, the cable goes out of the device from the end face. To save space and have the device shorter, the cable can go out of the device from the side wall for uses in air or shallow water (< $50 \mathrm{~m})$. Specify when ordering.	
Cable:	1. Two Conductor Shielded Cable (SC), Rubber or PVC Jacket. 2. 50Ω RG58 Coax (RG58) 3. 50Ω RG174/U Coax (RG174) 4. 50Ω RG178/U Coax (RG178) (Operating Temperature Range: $-70^{\circ} \mathrm{C}$ To $+200^{\circ} \mathrm{C}$) 5. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, Φ D $=3.2 \mathrm{~mm}$ (SC32), up to $200^{\circ} \mathrm{C}$, AWG26 Conductors. 6. Shielded Cable with Twisted Pair and Teflon (PTFE) Jacket, ФD=4.0 mm (SC40), up to $200^{\circ} \mathrm{C}, \mathrm{AWG} 20$ Conductors.	
	Handling: Do not use the cable to support transducer weight in air and water if the transducer has a mounting part. Do not bend the cable.	
Cable Length:	1. Default: 1 m . 2. Custom	
Connector:	1. Default: Wire Leads (WL) 2. Male BNC (BNC) (Max. Diameter ©14.3 mm) 3. SMA (Plug, Male Pin) (SMA), Voltage Rating: 335 VRMS Continuous. (Max. Diameter $\Phi 9.24 \mathrm{~mm}$) 4. SMC (Plug, Female Socket) (SMC), Voltage Rating: 335 VRMS Continuous. (SMC) (Max. Diameter Ф6.4 mm) 5. MIL-5015 Style (pin) (5015) (Max. Diameter Ф30 mm with 3 contacts) 6. LEMO (Plug Male Pins) (LEMO) (Max. Diameter $\Phi 9.5 \mathrm{~mm}$ with 3 contacts) 7. Underwater Mateable Connector (pin) (UMC) (Max. Diameter Ф21.5 to Ф35 mm) 8. Customized, buyer specifies the connector. (Custom) Note: Underwater Mateable Connector is for uses underwater. Other connectors and wire leads are for dry uses and are not waterproofed.	
Size:	TBD. To be determined with customization.	
Weight:	TBD. To be determined with customization.	
Operation Temperature:	1. Default: -10 to $+60^{\circ} \mathrm{C}$, or 14 to $140^{\circ} \mathrm{F}$. 2. Customized High Temperature Transducer: $-15^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ or $5^{\circ} \mathrm{F}$ to $248^{\circ} \mathrm{F}$.	
Storage Temperature:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ or $-4^{\circ} \mathrm{F}$ to $140{ }^{\circ} \mathrm{F}$.	
Impedance Matching:	BII-6000 Bespoke Impedance Matching between transducers and power amplifiers. Order Separately. Append IM to the part number for integrating BII-6000 in the transducer, and specify impedance in Ω. For example, BII-xxxxIM50 : BII-xxxx transducer with built-in Impedance Matching unit as a 50Ω load.	
TR Switch:	BII-2100 Transmitting \& Receiving Switch. Not Included. Order Separately, Append TR to part number (BII-xxxxTR).	
Temperature Sensor:	1. Default: No built-in temperature sensor.	

Benthowaye Instrument Inc.

	2. Built-in temperature sensor. Append TS to part number (BII-xxxxTS) for integrating a temperature sensor in the transducer.				
WARNING: DANGER - HIGH VOLTAGE on wires. Wires shall be insulated for safety. DO NOT TOUCH THE WIRES BEFORE THE DRIVING SIGNAL IS SHUT DOWN. Cable shield must be grounded firmly for safety.					
for 50 before hooking up transducer ber hydrophone to the signal source. Coax with BNC is not intended for hand-held use at voltages above 30Vac/60Vdc.					
Transducer Wiring:	Shielded Cable	Coax/BNC/SMA/SMC	Coax/Wire Leads	Underwater Connector	MIL-5015 Connector
Driving Signal	White or Red	Center Contact	Coax Center Conductor	Contact 2	Contact C
Signal Common	Black	Shield	Coax Shield	Contact 1	Contact B
Shielding \& Grounding	Shield	Shield	Coax Shield	Contact 3	Contact A

How to Order
Array Spacing d: the distance among the center lines of two neighboring elements.
Beam Width: The angle of main lobe at -3 dB when driving signals to all array elements are identical (f , phase and amplitude are same.).

Transducer	/fs	-N	-d	-Beam Width	-Mounting	-Cable Length	-Cable
BII-7631 BII-7632	in kHz	Number of elements	Spacing of Elements, in mm	$\mathrm{H}^{\circ} \times \mathrm{V}^{\circ}$ at fs	Refer to specs.	of Each Element, in meter	Refer to specs.
Example of Part Number:	Description						
BII-7631/100kHz-9-7.5mm-3 $\times 30^{\circ}-\mathrm{FH}-10 \mathrm{~m}-$ SC-WL	BII-7631 transducer, fs: 100kHz; Array Elements: 9; Array Element Spacing: 7.5mm; -3dB Beamwidth at fs: $3^{\circ} \times 30^{\circ} ;$ Free Hanging, $9 \times 10 \mathrm{~m}$ Shielded Cable, Wire leads.						

Directivity Pattern: illustration ONLY. Please refer to -3 dB beam width of a specific transducer.
Along-length or Cross-curve Along-width or Cross-length

3D "T" Type Imaging Multibeam Transducer: Two BII-7631 Linear Phased Array (Rectangular Aperture).

2D Imaging Multibeam Transducer: one BII-7631 Linear Phased Array (Rectangular Aperture) and one BII-7682 (Curvilinear or Cylindrical Sector Aperture).

Front View: Acoustic Window

Top View

