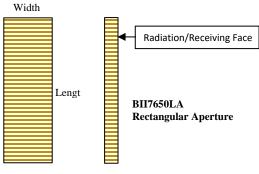
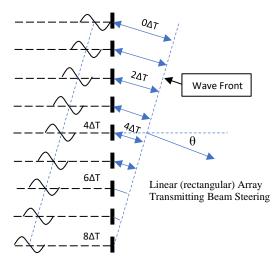

Benthowaye Instrument Inc. www.benthowave.com

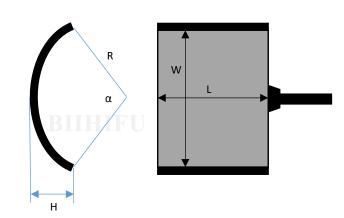
Underwater Sound Solutions


High Intensity Focused Ultrasound (HIFU) Transducer

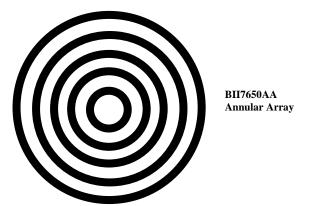
BII's high intensity focused ultrasound transducers consist of apertures: bowl (concave, with or without a center hole), cylindrical sector, Linear (rectangular) and Annular Array. The energy at focal point or focal line is for physical, chemical, biological, thermal and high-stress uses in nonlinear underwater acoustics: cavitation, streaming, sonic processes and HIFU R&D. The focus of linear array and annular array can be manipulated with technology of array beamforming (beam steering and focusing). The bowl aperture transducers provide the best lateral and axial resolutions. For information on MRI compatibility or safety, please contact BII. To support HIFU R&D, BII provides customized designs on frequency, geometric focus, Fresnel number, focal diameter/length/intensity.

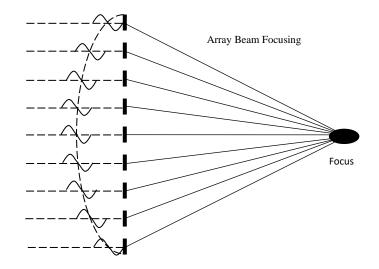
Concave Spherical Sector (Bowl) Aperture with or without Center Hole




Line Array (Rectangular Aperture, Beam Steering and Focusing)

Front


Left Side



Annular Array (Array Focusing)

Cylindrical Sector Aperture

Benthowaye Instrument Inc.

Underwater Sound Solutions

www.benthowave.com

Typical Applications	/ A a a u a ti a \ A	love Interaction			Thorm	al/Maabani	ical/Chami		al Effacto				
	n/Streaming/Acoustic Wave Interaction					Thermal/Mechanical/Chemical/Biological Effects							
High Frequency Ultrasound Energy Sources Dispersion/Emulsification/Coagulation					Sonic Radiation in Sonochemistry/Material Processing/Sonoluminescence								
	onic Processing/Testing/Analysis					Anti-algae & Anti-bacteria, Fluid Dynamics, Nonlinear Acoustics Focused Sound Sources for HIFU R&D							
Features	ing/Analysi	3			FUCUSE	u 300110 50	ances for F	ηρο καυ					
High Intensity: up to 5	000 W/cm	2			70 kHz	to 2.0 MH	z and the (Odd Harmor	nice				
High intensity. up to 5					70 KHZ		z, and the C		lics				
. Concave or Bowl Ape	rture												
. Cylindrical Sector Ape													
Line Array (Rectangul		e, Beam Steerin	g and Focusing)										
. Annular Array (Array	Focusing)												
IPP: Input Pulse Powe													
MPW: Maximum Puls									n W/(W*cn	n²).			
How to calculate the			•										
As an example, consid	•	•		• •				•				•	
Power * Efficiency * F						,	N/cm². Dep	pending on	the liquid o	or subject p	properties	s, cavitation	
might occur at much l							<u> </u>						
How to determine pu	lse width, o	duty cycle and o						istic Transd	ucers and I	Measurem	ent Systei	ms.	
				ive or Bow									
Focal Intensity:		ectrical Pulse Po							r)				
ΦAD:		Diameter: the						. ,					
Z _T :		cular distance f			e / i				housing.				
FL:	-	ngth: Distance f								-			
FD:		pth: Focal Dept			oints of th	e focal zon	e along acc	oustic axis p	erpendicul	ar to bowl			
500		mines the best				EDD data							
FBD:		am Diameter: t											
Customization	1. Bespoke: HIFU with a center hole whose Diameters is Φ15 mm. please append -CH to the part number. Note: BII7651 series and BII7651Q series are NOT recommended to have a center hole.												
Customization:		um HIFU BII ca			FI I Transd	icar Anarti	uro ΦD v E	ocal Longth	FI - M1 5	v 1 5 mm			
	fs	Impedance	FIPIEP	Efficiency	FBD	FD	FL		MIPP	MPW	MCIP	Size:mm	
HIFU (Bowl)	(MHz)	(Ω)	W/(W*cm ²)	η	(mm)	(mm)	(mm)	(mm)	(W)	(s)	(W)	ΦDxH	
BII7651-2100IM	2.1	50	52.0	0.52	1.31	11.29	30.5	29.1	190	1.8	22	Φ33x26	
BII7651Q-300IM	0.3	50	7.1	0.52	3.55	11.85	17.5	10.5	600	10	35	Φ42x30	
BII7651Q-500IM	0.5	50	14.0	0.52	2.13	7.11	19.5	12.5	600	6	45	Φ42x30	
BII7651Q-1000IM	1.0	50	78.6	0.52	1.07	3.56	20.5	13.5	500	3	50	Φ42x30	
BII7651Q-2000IM	2.0	50	314.4	0.52	0.53	1.78	21	14.0	500	2	50	Φ42x30	
BII7651H-300IM	0.3	50	4.8	0.52	4.29	17.3	25.0	18.7	600	10	35	Φ48x30	
BII7651H-500IM	0.5	50	13.5	0.52	2.58	10.38	27.0	20.7	600	6	45	Φ48x30	
BII7651H-1000IM	1.0	50	53.8	0.52	1.29	5.19	29.5	23.2	500	3.5	50	Ф48x30	
BII7651H-2000IM	2.0	50	215.4	0.52	0.64	2.60	30.0	23.7	500	2	50	Ф48x30	
BII7652-100IM	0.1	50	0.65	0.52	10.8	53	36	26	1100	11	17	Ф60x35	
BII7652-150IM	0.15	50	1.46	0.52	7.2	35	36	26	980	7.5	20	Ф60x35	
BII7652-200IM	0.2	50	3.0	0.52	5.51	18.97	27.5	17.4	1300	16	70	Ф60x35	
BII7652-300IM	0.3	50	6.6	0.52	3.67	12.64	30.0	20.0	1300	10	80	Ф60x35	
BII7652-500IM	0.5	50	18.4	0.52	2.20	7.60	32.0	22.0	1200	7	100	Ф60x35	
BII7652-1000IM	1.0	50	73.6	0.52	1.10	3.80	32.5	22.4	1200	3	120	Ф60x35	
BII7652-2000IM	2.0	50	294.6	0.52	0.55	1.90	33.0	23.0	1200	1.5	130	Ф60x35	
BII7653-70IM	0.07	50	0.3	0.52	16.0	81.0	56.0	41.6	2900	16	32	Ф89x45	
BII7653-100IM	0.1	50	0.6	0.52	11.2	56.5	56.0	41.6	2400	11	37	Ф89x45	
BII7653-150IM	0.15	50	1.3	0.52	7.46	37.68	56.0	41.6	2100	7.5	43	Ф89x38	
BII7653-200IM	0.2	50	2.7	0.52	7.00	32.00	43.2	34.5	1500	8	80	Ф89x38	
	1 0 2	50	4.0	0.52	4.80	21.00	48.0	39.0	2500	10	190	Ф89x38	
BII7653-300IM	0.3				2 00	1 1 2 0 0	51.0	42.0	2500	7	230	Ф89x38	
BII7653-500IM	0.5	50	11.0	0.52	3.00	13.00					-		
BII7653-500IM BII7653-1000IM	0.5 1.0	50	44.0	0.52	1.50	6.00	52.5	43.5	800	4	200	Ф89x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM	0.5 1.0 2.0	50 50	44.0 175.0	0.52 0.52	1.50 1.00	6.00 3.00	52.5 53.0	43.5 44.0	800 2500	4 2	300	Ф89x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM	0.5 1.0 2.0 0.07	50 50 50	44.0 175.0 0.165	0.52 0.52 0.52	1.50 1.00 21.5	6.00 3.00 144.85	52.5 53.0 100.0	43.5 44.0 86.6	800 2500 5100	4 2 16	300 57	Ф89x38 Ф114x45	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM	0.5 1.0 2.0 0.07 0.1	50 50 50 50	44.0 175.0 0.165 0.34	0.52 0.52 0.52 0.52	1.50 1.00 21.5 15	6.00 3.00 144.85 101.4	52.5 53.0 100.0 100.0	43.5 44.0 86.6 86.6	800 2500 5100 4300	4 2 16 11	300 57 65	Φ89x38 Φ114x45 Φ114x45	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM	0.5 1.0 2.0 0.07 0.1 0.15	50 50 50 50 50 50	44.0 175.0 0.165 0.34 0.75	0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0	6.00 3.00 144.85 101.4 67.60	52.5 53.0 100.0 100.0 100.0	43.5 44.0 86.6 86.6 86.6	800 2500 5100 4300 3800	4 2 16 11 7.5	300 57 65 75	Φ89x38 Φ114x45 Φ114x45 Φ114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM	0.5 1.0 2.0 0.07 0.1 0.15 0.2	50 50 50 50 50 50 50	44.0 175.0 0.165 0.34 0.75 1.53	0.52 0.52 0.52 0.52 0.52 0.52	1.501.0021.51510.07.70	6.00 3.00 144.85 101.4 67.60 36.60	52.5 53.0 100.0 100.0 100.0 88.0	43.5 44.0 86.6 86.6 86.6 74.6	800 2500 5100 4300 3800 5500	4 2 16 11 7.5 15	300 57 65 75 280	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3	50 50 50 50 50 50 50 50 50 50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43	0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10	6.00 3.00 144.85 101.4 67.60 36.60 24.40	52.5 53.0 100.0 100.0 100.0 88.0 92.5	43.5 44.0 86.6 86.6 74.6 79.1	800 2500 5100 4300 3800 5500 4800	4 2 16 11 7.5 15 10	300 57 65 75 280 345	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM	0.5 1.0 2.0 0.07 0.1 0.15 0.2	50 50 50 50 50 50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64	52.5 53.0 100.0 100.0 100.0 88.0 92.5 95.5	43.5 44.0 86.6 86.6 86.6 74.6	800 2500 5100 4300 3800 5500	4 2 16 11 7.5 15	300 57 65 75 280	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM BII7654-500IM	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3 0.5	50 50 50 50 50 50 50 50 50 50 50 50 50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54 Cylind	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06 r Apertu	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64 re: Foca	52.5 53.0 100.0 100.0 88.0 92.5 95.5 I Line	43.5 44.0 86.6 86.6 74.6 79.1 82.1	800 2500 5100 4300 3800 5500 4800 4800	4 2 16 11 7.5 15 10	300 57 65 75 280 345	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3 0.5 (Input Ele	50 50 50 50 50 50 50 50 50 ectrical Pulse Pc	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54 Cylind wer) * Transdu	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06 r Apertu * (Focal In	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64 re: Foca tensity per	52.5 53.0 100.0 100.0 88.0 92.5 95.5 I Line Input Elect	43.5 44.0 86.6 86.6 74.6 79.1 82.1 trical Power	800 2500 5100 4300 3800 5500 4800 4800	4 2 16 11 7.5 15 10	300 57 65 75 280 345	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM BII7654-300IM BII7654-500IM Focal Intensity: Z _T :	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3 0.5 (Input Ele The verti	50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54 Cylind wer) * Transdu m acoustic focu	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06 r Apertu * (Focal Ir nary plane	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64 re: Foca tensity per	52.5 53.0 100.0 100.0 88.0 92.5 95.5 I Line Input Elect e of the tra	43.5 44.0 86.6 86.6 74.6 79.1 82.1 trical Power nsducer ho	800 2500 5100 4300 3800 5500 4800 4800	4 2 16 11 7.5 15 10	300 57 65 75 280 345	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38 Ф114x38 Ф114x38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-200IM BII7654-300IM BII7654-500IM Focal Intensity: Z _T : Z _F :	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3 0.5 (Input Ele The verti Acoustic	50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54 Cylind wer) * Transdu m acoustic focu ical distance fro	0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06 r Apertu * (Focal Ir nary plane cus to the	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64 re: Foca tensity per of end fac concave fa	52.5 53.0 100.0 100.0 88.0 92.5 95.5 I Line Input Elect e of the trace of the tra	43.5 44.0 86.6 86.6 74.6 79.1 82.1 trical Power nsducer ho ansducer.	800 2500 5100 4300 3800 5500 4800 4800 4800 r) using.	4 2 16 11 7.5 15 10 7	300 57 65 75 280 345 400	Ф89х38 Ф114х45 Ф114х45 Ф114х38 Ф114х38 Ф114х38 Ф114х38	
BII7653-500IM BII7653-1000IM BII7653-2000IM BII7654-70IM BII7654-100IM BII7654-150IM BII7654-200IM BII7654-300IM BII7654-500IM Focal Intensity: Z _T :	0.5 1.0 2.0 0.07 0.1 0.15 0.2 0.3 0.5 (Input Ele The verti Acoustic Focal Ler	50 50	44.0 175.0 0.165 0.34 0.75 1.53 3.43 9.54 Cylind wer) * Transdu m acoustic focu ical distance fro etween -3dB po	0.52 0.53 0.54 0.55	1.50 1.00 21.5 15 10.0 7.70 5.10 3.06 r Apertu * (Focal Ir nary plane cus to the cal zone al	6.00 3.00 144.85 101.4 67.60 36.60 24.40 14.64 re: Foca tensity per of end fac concave fa ong geome	52.5 53.0 100.0 100.0 88.0 92.5 95.5 I Line Input Elected of the trace of the tra	43.5 44.0 86.6 86.6 74.6 79.1 82.1 trical Power nsducer ho ansducer.	800 2500 5100 4300 3800 5500 4800 4800 4800 r) using.	4 2 16 11 7.5 15 10 7	300 57 65 75 280 345 400	Ф89x38 Ф114x45 Ф114x45 Ф114x38 Ф114x38 Ф114x38 Ф114x38	

BII			Bentho		Inst							Page 3 of
SE=SL-TL+AG-NL	fs	Impedance	FIPIEP	Lutions Efficiency	FW	FL W	ww.bentho	wave.com	MIPP	MPW	MCIP	Size: mm
Cylindrical Sector	(MHz)	(Ω)	W/(W*cm²)	η	(mm)	(mm)	(mm)	(mm)	(W)	(s)	(W)	LxWxH
BII7650H/2000CS	2.0	50	18.0	0.6	0.65	16	4.5	2.3	100	2	10	25x16x10
BII7650Q/2000CS	2.0	50	12.8	0.6	0.65	22.3	7.5	4.4	200	2	20	32x21x12
BII7651/2000CS	2.0	50	10.4	0.6	0.65	27.6	10	6.2	300	2	35	38x25x14
BII7651Q/2000CS	2.0	50	7.5	0.6	0.65	38.2	15	9.7	500	2	60	45x30x16
BII7651Q/1000CS	1.0	50	3.7	0.6	1.3	38.2	15	10	500	3.5	60	45x30x16
BII7651H/2000CS BII7651H/1000CS	2.0 1.0	50 50	6.7 3.4	0.6	0.65	42.4 42.4	17 17	11 11	700 700	2 3.5	80 70	52x35x18 52x35x18
BII7652/2000CS	2.0	50	5.2	0.6	0.65	55	23	15	1200	2	140	65x45x20
BII7652/1000CS	1.0	50	2.6	0.6	1.3	55	23	15	1200	3.5	120	65x45x20
BII7652/500CS	0.5	50	1.3	0.6	2.6	55	23	15	1200	7	100	65x45x20
BII7653/1000CS	1.0	50	1.8	0.6	1.3	82	35.5	24	2500	3.5	280	90x63x25
BII7653/500CS	0.5	50	0.9	0.6	2.6	82	35.5	24	2500	7.5	230	90x63x25
BII7653/300CS	0.3	50	0.5	0.6	4.3	82	35.5	24	3000	10	190	90x63x25
BII7654/500CS	0.5	50	0.7	0.6	2.6	108	48	33	4500	7	400	118x80x30
BII7654/300CS	0.3	50	0.4	0.6	4.3	108	48	33	5500	10	340	118x80x30
BII7654/200CS	0.2	50	0.3	0.6	6.5	108	48	33	5500	15	280	118x80x30
			Array: Recta					d Focusin	g			
Customized, please sp		·	ement size, elem	ent quantity	, operating	g frequency	/, etc					
Frequency: Array Geometry:	50 kHz t	o 1 MHz Rectangular)										
Beamforming:		cusing and Ste	ering.									
2001101118	Dealitie		-	nnular Ar	rav [.] Arra	v Focusi	ng					
Customized, please sp	necify elem	ent snacing el					-					
Frequency:	50 kHz t			chi quantity	, operating	, nequency	, ete					
Array Geometry:	Annular.											
Beamforming:	Beam Fo											
Warning: the loading	medium w	/hich the trans	ducer is immers	ed in MUST k	oe non-cor	rosive and	non-flamn	nable.				
fs Tolerance:		Typical										
Third Harmonic:			ducers can opera IE/Square/Chirp		l an imped	ance matc	hing netwo	rk at 3fs sh	ould be o	rdered.		
					igh nower	continuou	s signal to c	trivo HIELL+	ransduce	r		
		To avoid overheating transducer, DO NOT use high power continuous signal to drive HIFU transducer. How to determine pulse width, duty cycle and off-time with input pulse power (peak power):										
Pulse Driving Signal:		1. Determine the input pulse power (IPP, peak power) with sound intensity required by the project. IPP MUST be less than MIPP.										
		2. Pulse Width \leq (MIPP * MPW*(120°c-T)/103°c)/IPP. T: Water Temperature in °c.										
		3. Duty Cycle $D \leq MCIP^*(120^{\circ}c-T)/103^{\circ}c)/IPP$.										
		$ff-time \ge PW^*($										
Quality Factor Q _m :			ndwidth $\Delta f = fs/C$									
SPL at fs:			Level SPL = \sqrt{F}		, ,	ρC = Chai	racteristic li	mpedance	of loading	g medium.		
Free Capacitance:			neet of a specific									
Dissipation:			neet of a specific									
Admittance:			neet of a specific									
Driving Voltage: Operating Depth:			neet of a specific nd Limited by the			le has wire	leads or a	non-water	proof con	nector		
				. cable leligti				water				
		1. Default: Free Hanging (FH) 2. Thru-hole Mounting with Single O-ring (THSO)										
		3. Thru-hole Mounting with Double O-ring (THDO)										
Mounting Options:	4. B	4. Bolt Fastening Mounting (Stainless Steel) (BFMSS)										
mounting options.		5. End-face Mounting (EFM)										
		6. Flange Mounting (FGM)										
		7. Flush Mounting (FSM) Please refer to online document AcousticSystem.pdf for a complete list of Mounting Options and more details.										
			le goes out of th		-		IIST OF IVIOUI		ns anu m	ore details		
Cable-Out:			have the device				e device fro	om the side	e wall. Spe	cify when	ordering	
Cabler		0 Ω RG58 Coax		,	- C				- 17	,	0	
Cable:			Shielded Cable (S	SC)								
Cable Length:		efault: 1 m. 2.										
		efault: Wire Le	. ,									
		0 Ω BNC Male (
			teable Connector	r (UMC)								
Connector:		11L-5015 Style (
		ustom (custom		octor is f-	undor	or 11000 0	thor octain	store card	wire last	le are fo	day uses	and are the
		e: Underwater erproof.	Mateable Conr	IECLOF IS TOP	underwat	er uses. O	ther conne	ctors and	wire lead	is are tor	ury uses	anu are non-
Size:			neet of a specific	HIFLI transde	ucer							
Weight:			able. Actual weig			ng Parts C	able Types	and Length	l.			
	1. D	<u> </u>	o +60 °C or 14 °F			115 i ai ts, C	anic Types	ana Length	•			
Operation Temperatu	re.		mperature Tran		C to 120 °C	, or 14 °F t	o 248 °F. A	ppend HT to	o part nur	nber.		

Benthowaye Instrument Inc.

SE=SL-TL+AG-NL	Underwater Sound Solutions	www.benthowave.com
Storage Temperature:	-20 °C to +60 °C or -4 °F to 140 °F.	
Power Amplifier:	BII5000 Series Power Amplifier, Order Separately, or Third-	party's power amplifiers such as 50 Ω RF power amplifiers.
Impedance Matching:		rs and power amplifiers. Order Separately. Append IM to the part number bedance in Ω . For example, BIIxxxxIM50 Ω : BIIxxxx transducer with built-in
Temperature Sensor:	 Default: No built-in temperature sensor. Built-in temperature sensor. Append TS to part numl Click <u>Temperature Characteristics</u> for more information. 	per (BIIxxxxTS) for integrating a temperature sensor in the transducer.

WARNING: DANGER — HIGH VOLTAGE on wires. Wires shall be insulated for safety. DO NOT TOUCH THE WIRES BEFORE THE DRIVING SIGNAL IS SHUT DOWN. Cable shield must be grounded firmly for safety. for 50Ω BNC Male connector, it is buyer's sole responsibility to make sure that the (female) BNC shield of the signal source is firmly grounded for operating safety

before hooking up transducer/hydrophone to the signal source. Coax with BNC is not intended for hand-held use at voltages above 30Vac/60Vdc.								
Wiring:	Two Conductor Shielded Cable	Coax/BNC	Underwater Connector	MIL-5015 Connector				
Signal	White or Red	Center Contact	Contact 2	Contact C				
Signal Common	Black	Shield	Contact 1	Contact B				
Shielding and Grounding	Shield	Shield	Contact 3	Contact A				

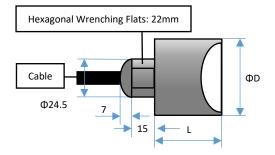
Maintenance and Operations of BII HIFU Transducers.

	Phenomenon on Water Surface at Room Temperature: Mist, Fog and Tiny Fountain with height of 8 cm.					
(BII7652/2000)						
2MHz HIFU Transducer:	Driving Signal: Pulsed/Burst Pulse Train, 2MHz, Pulse Width =10mS, Duty Cycle=10%. Electrical Power delivered to Transducer: 1.5 W.					
	System Setup: Pulse Signal Generator -> BII5111 -> BII6010 -> BII7652/2000 -> Water Tank.					
	Phenomenon on Water Surface at Room Temperature: Mist, Fog and Tiny Fountain with height of 8 to 10 mm.					
(BII7653/1000)	Electrical Power delivered to Transducer: 5W					
1MHz HIFU Transducer:	Driving Signal: SINE Pulse, 1MHz, Pulse Width=0.1mS, Duty Cycle=10%.					
	System Setup: Pulse Signal Generator -> BII5121 -> BII6010 -> BII7653/1000 -> Water Tank.					
Case Study:						
	Warning: Do NOT touch water and transducer when the system is powered.					
Remove air bubbles	Rub the radiation surface lightly with soft cloth in water before driving HIFU transducer each time.					
	Air bubbles will develop on the radiation surface especially in fresh water or liquids.					
Cool down transducer	Refer to How to determine pulse width, duty cycle and off-time with input pulse power (peak power).					
15 to 60 watt	Strong Fountain, Mist and Fog.					
1 to 10 watt	Fountain occurs; Mist and Fog start to occur.					
Driving HIFU Transducer	Phenomenon on Water Surface at Room Temperature: Mist, Fog and Fountain.					
frequency and driving voltag	e level or driving power. As a general guide, the cavitation threshold of the liquid increases as the operating frequency increases.					
To produce the cavitation in	1 liquids, please choose carefully the liquid (surface tension, viscosity, temperature), hydrostatic pressure, pulse length, operating					
General Operating Guide of	BII HIFU Transducer					
tested at the buyer's cost by	National Metrology Institutes or other organizations who provide calibration services.					
	ansducers. BII DOES NOT GUARANTEE THEIR ACCURACY. To get accurate data of these parameters, the buyer shall have the transducer					
v 1	ty, Focal Diameter and Focal Length in the specs are tested with low intensity sound level at BII or are calculated with electrical and					
Testing before shipment: BI	carries out the cavitation test in water to HIFU transducers.					
	good routine to rub the transducer radiation surface lightly with soft cloth before operating the transducer each time. Do NOT touch the water/liquid and transducer when the system is powered.					
Remove Air Bubbles on Radiation Surface:	cloth before driving the transducer. An flashlight is a useful aid to check the situation of the transducer surface underwater. It is a					
	To increase power efficiency, the air bubbles on transducer radiation face developed during operation must be removed with soft					
	temperature range.					
Cooling Transducer:	transducers to cool down in water or liquid. Effective cooling is necessary by liquid circulation and keep water/liquid in specified					
	To avoid overheating the HIFU transducers during high power applications, pulse driving signal MUST be used to allow HIFU					

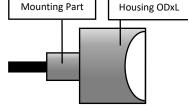
Frequency	Aerated (tap) Water: Cavitation Threshold.	RMS Pressure MPa	Degassed Water: Cavitation Threshold.	RMS Pressure MPa
70 kHz	0.8 W/cm ²	0.035	8 W/cm ²	0.110
100 kHz	1 W/cm ²	0.039	9 W/cm ²	0.116
150 kHz	1.6 W/cm ²	0.049	11 W/cm ²	0.128
200 kHz	2 W/cm ²	0.055	13 W/cm ²	0.140
300 kHz	7 W/cm ²	0.102	25 W/cm ²	0.194
400 kHz	8 W/cm ²	0.110	40 W/cm ²	0.245
500 kHz	10 W/cm ²	0.122	60 W/cm ²	0.300
1 MHz	600 W/cm ²	0.949	600 W/cm ²	0.949
2 MHz	1000 W/cm ²	1.225	1000 W/cm ²	1.225
3 MHz	5000 W/cm ²	2.739	5000 W/cm ²	2.739
4 MHz	10000 W/cm ²	3.873	10000 W/cm ²	3.873
5 MHz	80000 W/cm ²	10.954	80000 W/cm ²	10.954

Benthowaye Instrument Inc. www.benthowave.com

Underwater Sound Solutions

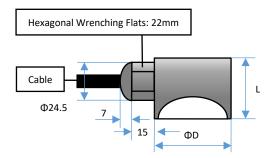

Package Types of HIFU Transducers

Physical Size of Bowl or Concave Spherical Sector without Center Hole (Dimensional Unit: mm):

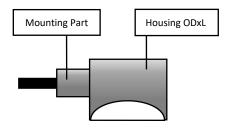

The overall length varies with the length of mounting parts. Please refer to online information of mounting options.

1. Cable goes out of the device from the end face.

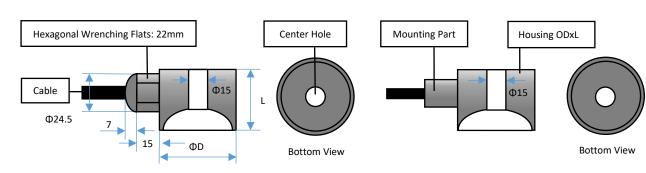
a. Size information of Free Hanging.



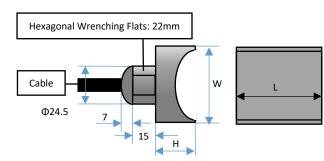
b. General Size information.


2. Cable goes out of the device from the side wall.

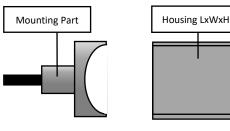
a. Size information of Free Hanging.


b. General Size information.

b. General Size information.


Physical Size of Bowl or Concave Spherical Sector with Center Hole (Dimensional Unit: mm): The overall length varies with the length of mounting parts. Please refer to online information of mounting options. Cable goes out of the device from the end face.

a. Size information of Free Hanging.



Cylindrical Sector Aperture (Dimensional Unit: mm): 1. Cable goes out of the device from the rear.

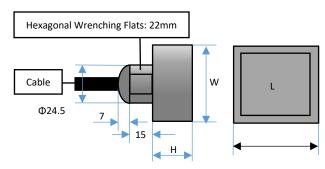
a. Size information of Free Hanging.

b. General Size information.

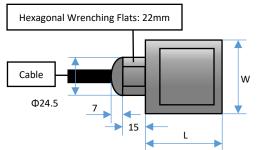
Benthowaye Instrument Inc. Underwater Sound Solutions

www.benthowave.com

2. Cable goes out of the device from the end face. a. Size information of Free Hanging.


Hexagonal Wrenching Flats: 22mm Cable W Φ24.5 7 15 L Þ

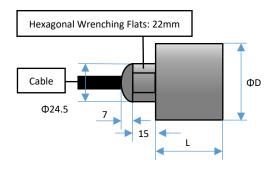
н


Left View

Line Array (Rectangular Aperture) (Dimensional Unit: mm):

- 1. Cable goes out of the device from the Rear.
- a. Size information of Free Hanging.

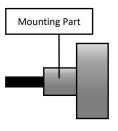
- 2. Cable goes out of the device from the end face.
- a. Size information of Free Hanging.

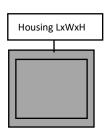


Н

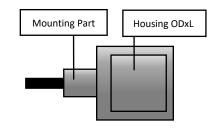
Left View

Annular Array (Dimensional Unit: mm): a. Size information of Free Hanging.

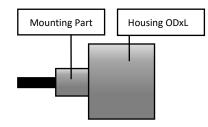

Mounting Part Housing ODxL



Left View

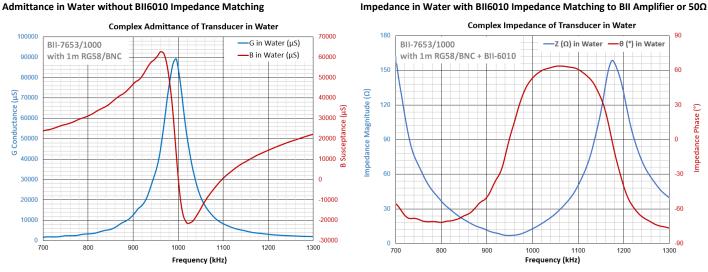

b. General Size information.

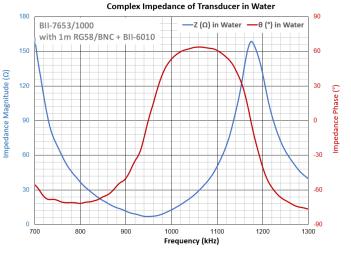
b. General Size information.

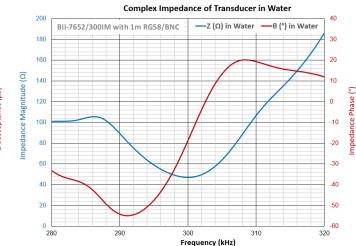

b. General Size information.

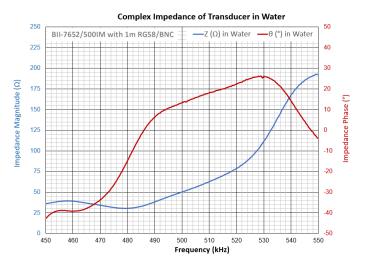
Left View

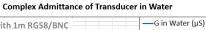
b. General Size information.

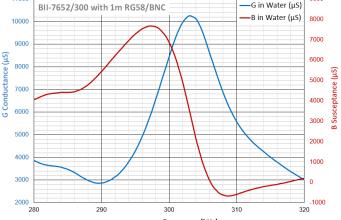

11000

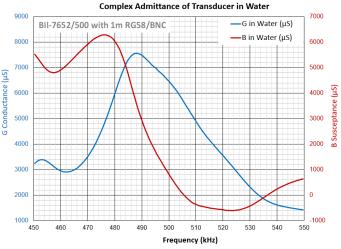

Benthowaye Instrument Inc. Underwater Sound Solutions


9000


www.benthowave.com


Admittance in Water without BII6010 Impedance Matching





Frequency (kHz)

